Wiggling and jiggling atoms in enzymes explained
Physicist Richard Feynman famously said, in principle, biology can be explained by understanding the “wiggling and jiggling” of atoms. For the first time, new research from the University of Bristol and the University of Waikato explains how this wiggling and jiggling of the atoms in enzymes, the proteins that make biological reactions happen, is choreographed to make them work at a particular temperature.
Enzyme catalysis is essential to life, and this research sheds light on how enzymes have evolved and adapted, enabling organisms to evolve to live at different temperatures.
The University of Bristol reports this is the first study to link the enzyme’s dance, in atomic detail, directly to its optimal temperature. These findings provide new insights into how the structure of enzymes is related to its role as a catalyst and importantly, could provide a route to designing better biocatalysts for use in chemical reactions in industrial processes, such as the production of drugs. It also hints at why proteins were eventually preferred by evolution over nucleic acids as catalysts in biology; proteins offer much more ability to tune their wiggling and jiggling and their response to chemical reactions.
Dr Marc van der Kamp and Professor Adrian Mulholland, from the University of Bristol, worked with Professor Vic Arcus, from the University of Waikato, and colleagues, to find how the wiggling and jiggling, or the dynamics of enzymes is tuned down during the reaction they catalyse. As a result, the heat capacity of enzymes changes during the reaction, and it is the size of this change that is the critical factor in determining the temperature at which the enzyme works best.
Marc Van der Kamp said “Our computer simulations of the ‘wiggling and jiggling’ of enzymes at different stages in the reaction tells us how these structural fluctuations give rise to the difference in heat capacity, and thereby can predict the optimum temperature of an enzyme. Our work demonstrated that we can do this accurately for two completely different enzymes, by comparing to experimental data. What is fascinating to see is that the whole enzyme structure is important: the ‘dance’ does not only change close to where the chemical reaction takes place, but also in parts much further away. This has consequences for evolution: the combination of the enzyme structure and the reaction the enzyme catalyses will define its optimal working temperature. A subtle change in structure can change the ‘dance’.”
This article was updated on April 12th to correct the spelling of the University of Waikato’s name.